2.1 The Tangent and Velocity Problems

1. A tank holds 1000 gallons of water, which drains from the bottom of the tank in half an hour. The values in the table show the volume V of water remaining in the tank (in gallons) after t minutes.

$t(\mathrm{~min})$	5	10	15	20	25	30
V (gal)	694	444	250	111	28	0

(a) If P is the point $(15,250)$ on the graph of V, find the slopes of the secant lines $P Q$ when Q is the point on the graph with $t=5,10,20,25$, and 30 .
(b) Estimate the slope of the tangent line at P by averaging the slopes of two secant lines.
(c) Use a graph of the function to estimate the slope of the tangent line at P. (This slope represents the rate at which the water is flowing from the tank after 15 minutes.)

Solution
a) Calculate slope of $P Q$

$$
\begin{aligned}
& m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& P=(15,250) \quad\left(x_{1}, y_{1}\right)
\end{aligned}
$$

-	44		
10	444	$444-250$	
20	111	\cdots	-38.8
25	28	\cdots	-27.8
30	0	\cdots	$-16 . \overline{6}$

b) Using the values of t that correspond to the points closest to $P(t=10$ and $t=20)$, we have

$$
\frac{-38.8+(-27.8)}{2}=-33.3
$$

c) from the graph, we can estimate the slope of the tangent line at P to be

$$
\frac{-300}{9}=-33 . \overline{3}
$$

2.2 The Limit of a Function

1. Explain in your own words what is meant by the equation

$$
\lim _{x \rightarrow 2} f(x)=5
$$

Is it possible for this statement to be true and yet $f(2)=3$? Explain.

Solution

The limit as x approaches 2 of $f(x)$ is 5 or As x approaches $2, f(x)$ approaches 5
Yes it is possible. There could be a hole in the graph at $(2,5)$, and be defined at $(2,3)$
2. Explain what it means to say that

$$
\lim _{x \rightarrow 1^{-}} f(x)=3 \quad \text { and } \quad \lim _{x \rightarrow 1^{+}} f(x)=7
$$

In this situation is it possible that $\lim _{x \rightarrow 1} f(x)$ exists? Explain.

Solution
The limit as x approaches 1 from the left of $f(x)$ is 3
and
The limit as x approaches 1 from the right of $f(x)$ is 7

The limit as x approaches 1 does not exist because the limit from the left does not equal the limit from the right
5. For the function f whose graph is given, state the value of each quantity, if it exists. If it does not exist, explain why.
(a) $\lim _{x \rightarrow 1} f(x)$
(b) $\lim _{x \rightarrow 3^{-}} f(x)$
(c) $\lim _{x \rightarrow 3^{+}} f(x)$
(d) $\lim _{x \rightarrow 3} f(x)$
(e) $f(3)$

Solution
a) 2
b) 1
c) 4
d) This limit does not exist because the limit from
e) 3 the left does not equal the limit from the right
8. For the function R whose graph is shown, state the following.
(a) $\lim _{x \rightarrow 2} R(x)$
(b) $\lim _{x \rightarrow 5} R(x)$
(c) $\lim _{x \rightarrow-3^{-}} R(x)$
(d) $\lim _{x \rightarrow-3^{+}} R(x)$
(e) The equations of the vertical asymptotes.

Solution
d) $-\infty$
b) ∞
c) $-\infty$
d) ∞
e) $x=-3$

$$
x=2
$$

$$
x=5
$$

Guess the limit using a table of the following values
20. $\lim _{x \rightarrow-1} \frac{x^{2}-2 x}{x^{2}-x-2}$,

$$
\begin{aligned}
& x=0,-0.5,-0.9,-0.95,-0.99,-0.999 \\
& -2,-1.5,-1.1,-1.01,-1.001
\end{aligned}
$$

Solution

x	$f(x)$		x	$f(x)$
	0		-2	2
-0.5	-1		-1.5	3
-0.9	-9		-1.1	11
-0.95	-19		-1.01	101
-0.99	-99		-1.001	1001
-0.999	-999			

The limit does not exist because $\lim _{x \rightarrow-1^{-}} f(x)=\infty$ and

$$
\lim _{x \rightarrow-1^{+}} f(x)=-\infty
$$

22. $\lim _{h \rightarrow 0} \frac{(2+h)^{5}-32}{h}$, decimal places

$$
h= \pm 0.5, \pm 0.1, \pm 0.01, \pm 0.001, \pm 0.0001
$$

Solution

h	$f(h)$		h
0.5	131.312500	-0.5	48.812500
0.1	88.410100	-0.1	72.390100
0.01	80.804010	-0.01	79.203990
0.001	80.080040	-0.001	79.920040
0.0001	80.008000	-0.000	79.992000

from these tables, it appears that $\lim _{h \rightarrow 0} \frac{(2+h)^{5}-32}{h}=80$
2.3 Calculating Limits using Limit Laws

1. Given that

$$
\lim _{x \rightarrow 2} f(x)=4 \quad \lim _{x \rightarrow 2} g(x)=-2 \quad \lim _{x \rightarrow 2} h(x)=0
$$

find the limits that exist. If the limit does not exist, explain why.
(a) $\lim _{x \rightarrow 2}[f(x)+5 g(x)]$
(b) $\lim _{x \rightarrow 2}[g(x)]^{3}$
(c) $\lim _{x \rightarrow 2} \sqrt{f(x)}$
(d) $\lim _{x \rightarrow 2} \frac{3 f(x)}{g(x)}$
(e) $\lim _{x \rightarrow 2} \frac{g(x)}{h(x)}$
(f) $\lim _{x \rightarrow 2} \frac{g(x) h(x)}{f(x)}$

Solution
a)

$$
\begin{aligned}
& \lim _{x \rightarrow 2}[4+5(-2)] \\
& =4-10 \\
& =-6
\end{aligned}
$$

b)

$$
\begin{aligned}
& \lim _{x \rightarrow 2}[g(x)]^{3} \\
& =(-2)^{3} \\
& =-8
\end{aligned}
$$

c) $\lim \sqrt{4}$
$x \rightarrow 2$
d)

$$
=2
$$

$$
\begin{gathered}
\lim _{x \rightarrow 2} \frac{3(4)}{-2} \\
=\frac{12}{-2} \\
=-6
\end{gathered}
$$

e) $\lim \frac{-2}{n}$
f) $\lim \frac{-2(0)}{4}$
$x \rightarrow 2$
We cannot
evaluate this
$x \rightarrow 2 \quad 7$
$=\frac{0}{4}$
$=0$
limit because
the denominator
is O (PNE)
$*$ infinite limit $\rightarrow \frac{\#}{0}$ *
2. The graphs of f and g are given. Use them to evaluate each limit, if it exists. If the limit does not exist, explain why.

(a) $\lim _{x \rightarrow 2}[f(x)+g(x)]$
(b) $\lim _{x \rightarrow 1}[f(x)+g(x)]$
(c) $\lim _{x \rightarrow 0}[f(x) g(x)]$
(d) $\lim _{x \rightarrow-1} \frac{f(x)}{g(x)}$
(e) $\lim _{x \rightarrow 2}\left[x^{3} f(x)\right]$
(f) $\lim _{x \rightarrow 1} \sqrt{3+f(x)}$

Solution

$$
\text { d) } \lim _{x \rightarrow 2} f(x)=2 \quad \lim _{x \rightarrow 2} g(x)=0
$$

$$
\begin{aligned}
& \\
& \\
& = \\
& =
\end{aligned}
$$

b) $\lim _{x \rightarrow 1} f(x)=1 \quad \lim _{x \rightarrow 1} g(x)=$ DNE because the limit from the right does not equal the limit from the left
c)

$$
\begin{aligned}
& \lim _{x \rightarrow 0} f(x)=0 \quad \lim _{x \rightarrow 0} g(x)=4 / 3 \\
& (0 \cdot 4 / 3) \\
& =0
\end{aligned}
$$

d) $\lim _{x \rightarrow-1} f(x)=-1 \quad \lim _{x \rightarrow-1} g(x)=0$
$=\frac{-1}{0}$ This limit does not exist because the denominator is 0
e)

$$
\begin{aligned}
& x=2 \quad \lim _{x \rightarrow 2} f(x)=2 \\
& \left(2^{3}\right)(2) \\
& =16
\end{aligned}
$$

f)

$$
\begin{gathered}
\lim _{x \rightarrow 1} f(x)=1 \\
\sqrt{3+1} \\
=\sqrt{4} \\
=2
\end{gathered}
$$

Evaluate the following limits
11. $\lim _{x \rightarrow 5} \frac{x^{2}-6 x+5}{x-5}$
$\frac{x^{2}-6 x+5}{x-5}$ if you try to plug in 5 , the numerator and denominator will both be 0
$\frac{(x-5)(x-1)}{(x-5)}$ * \% means there is a removable discontinuity (cancel the hole)
$(x-1)$
(5-1)

$$
=4 \quad \lim _{x \rightarrow 5} \frac{x^{2}-6 x+5}{x-5}=4
$$

20. $\lim _{t \rightarrow 1} \frac{t^{4}-1}{t^{3}-1}$
otart by using difference of perfect squares to factor the numerator

$$
\begin{aligned}
& \left(t^{2}+1\right)\left(t^{2}-1\right)<\text { factor again } \\
& \left(t^{2}+1\right)(t-1)(t-1)
\end{aligned}
$$

then factor the denominator
$(t-1)\left(t^{2}+t+1\right)$ check the factor

$$
=t^{3}+t^{2}+t-t^{2}-t-1
$$

$=t^{3}-1$ (factored correctly)
then you will be left with

$$
\frac{\left(t^{2}+1\right)(t-1)(t+1)}{(t-1)\left(t^{2}+t+1\right)}
$$

($t-1$) is on both the top and bottom of the fraction
$\frac{\left(t^{2}+1\right)(t+1)}{t^{2}+t+1}$ plug in 1 for t and solve

$$
\begin{aligned}
& \frac{\left(1^{2}+1\right)(1+1)}{1^{2}+1+1} \\
& =\frac{(2)(2)}{3} \\
& =\frac{4}{3}
\end{aligned}
$$

30. $\lim _{x \rightarrow-4} \frac{\sqrt{x^{2}+9}-5}{x+4}$

Solution
start by multiplying the numerator and denominator by the conjugate of $\sqrt{x^{2}+9}-5$

$$
\begin{aligned}
& \lim _{x \rightarrow-4} \frac{\sqrt{x^{2}+9}-5}{x+4}\binom{\sqrt{x^{2}+9}+5}{\sqrt{x^{2}+9}+5} \\
& =\lim \frac{x^{2}+9-25 \quad \text { simplify }}{} \quad
\end{aligned}
$$

$$
\begin{aligned}
& x \rightarrow-4 \overline{(x+4)\left(\sqrt{x^{2}+9}+5\right) \quad \text { factor the numerator }} \begin{array}{l}
=\lim _{x \rightarrow-4} \frac{x^{2}-16}{(x+4)\left(\sqrt{x^{2}+9}+5\right) \quad \text { difference of perfect squ }} \\
=\lim _{x \rightarrow-4} \frac{(x+4)(x-4)}{(x+4)\left(\sqrt{x^{2}+9}+5\right) \quad \text { simplify }} \\
=\lim _{x \rightarrow-4} \frac{x-4}{\sqrt{x^{2}+9}+5} \quad \text { plug in }-4 \text { for } x \\
=\frac{-4-4}{\sqrt{-4^{2}+9}+5} \quad \text { simplify } \\
=\frac{-8}{\sqrt{25}+5} \\
=\frac{-8}{5+5} \\
=\frac{-8}{10} \\
=-\frac{4}{5}
\end{array}
\end{aligned}
$$

(difference of perfect squares)
2.4 The Precise Definition of a Limit

Symbol/Abbreviation Review
$\forall \rightarrow$ for all/for every
$\exists \rightarrow$ There exists/there is
$\ni \rightarrow$ such that (s.t.)
$\therefore \rightarrow$ Therefore
ε - epsilon (represents desired margin of error)
$\delta \rightarrow$ delta (maximum distance from $x=d$ to fit in the margin of error)
W.T.S. \rightarrow Want to show

Now do you translate a limit statement to the ε / δ form?

$$
\lim _{x \rightarrow 2} f(x)=L \rightarrow \text { if } 0<|x-d|<\delta \text { then }|f(x)-L|<\varepsilon
$$

What is the general $\varepsilon / \varepsilon$ Proof Statement?
W.T.S. $\forall \varepsilon>0, \exists \delta>0$ st. if $0<|x-\partial|<\delta$, then |f $(x)-L \mid<\varepsilon$
What is the first step in solving a proof? find 8

What is the second step of the proof?
plug in 8 for ε (you're undoing what
you did in step 1) you did in step 1)
What is the final step?
state the conclusion (\because restate lime equation)
16. $\lim _{x \rightarrow 4}(2 x-5)=3$

Solution

$$
0<|x-4|<\delta \quad|(2 x-5)-3|<\varepsilon
$$

W.T.S. $\forall \varepsilon>0, \exists \delta>0$ st. if $0<|x-4|<\delta$, then

$$
|(2 x-5)-3|<\varepsilon
$$

1) find δ

$$
\begin{aligned}
& |(2 x-5)-3|<\varepsilon \\
= & |2 x-8|<\varepsilon \\
= & |2(x-4)|<\varepsilon \\
= & 2|x-4|<\varepsilon \\
= & |x-4|<\frac{\varepsilon}{2} \quad \rightarrow|x-4|<\varepsilon
\end{aligned}
$$

$$
\frac{\varepsilon}{2}=\delta
$$

2) Prove it

$$
\begin{aligned}
& \text { Given } \varepsilon>0, \text { let } \delta=\frac{\varepsilon}{2} \\
& |x-4|<\frac{\varepsilon}{2} \\
= & 2|x-4|<\varepsilon \\
= & |2(x-4)|<\varepsilon \\
= & |2 x-8|<\varepsilon \\
= & |(2 x-5)-3|<\varepsilon \\
\therefore & \lim _{x \rightarrow 4}(2 x-5)=3
\end{aligned}
$$

2.5 Continuity

$$
\begin{array}{lll}
\lim _{x \rightarrow-2^{-}} f(x)= & \lim _{x \rightarrow-2^{+}} f(x)= & \lim _{x \rightarrow-2} f(x)= \\
f(-2)= & \lim _{x \rightarrow 0^{-}} f(x)= & \lim _{x \rightarrow 0^{+}} f(x)= \\
\lim _{x \rightarrow 0} f(x)= & f(0)= & \lim _{x \rightarrow 2^{-}} f(x)= \\
\lim _{x \rightarrow 2^{+}} f(x)= & \lim _{x \rightarrow 2} f(x)= & f(2)= \\
\lim _{x \rightarrow 4^{-}} f(x)= & \lim _{x \rightarrow 4^{+}} f(x)= & \lim _{x \rightarrow 4} f(x)= \\
f(4)= & \lim _{x \rightarrow 6^{-}} f(x)= & \lim _{x \rightarrow 6^{+}} f(x)= \\
& & \\
& f(6)= &
\end{array}
$$

Is $f(x)$ continuous at the following points? If not, what type of discontinuity is present?

$$
f(-2) \quad f(0) \quad f(2) \quad f(4) \quad f(6)
$$

What type of discontinuity is this?

Removable Point Discontinuity
\qquad
\qquad
\qquad \longrightarrow
\qquad \longrightarrow
\qquad

\qquad \longrightarrow \longrightarrow \longrightarrow 4 \longrightarrow \longrightarrow \longrightarrow \longrightarrow $\left[\begin{array}{ll}2 \\ \hline\end{array}\right.$ \longrightarrow \longrightarrow
 \longrightarrow \longrightarrow
\qquad \longrightarrow 4
\qquad
\qquad
\qquad
\qquad \longrightarrow
\qquad \longrightarrow
\qquad

\qquad \longrightarrow \longrightarrow \longrightarrow 4 \longrightarrow \longrightarrow \longrightarrow \longrightarrow $\left[\begin{array}{ll}2 \\ \hline\end{array}\right.$ \longrightarrow \longrightarrow
 \longrightarrow \longrightarrow
\qquad \longrightarrow 4
\qquad

