2.1 The Tangent and Velocity Problems

 A tank holds 1000 gallons of water, which drains from the bottom of the tank in half an hour. The values in the table show the volume V of water remaining in the tank (in gallons) after t minutes.

t (min)	5	10	15	20	25	30
V(gal)	694	444	250	111	28	0

- (a) If *P* is the point (15, 250) on the graph of *V*, find the slopes of the secant lines *PQ* when *Q* is the point on the graph with t = 5, 10, 20, 25, and 30.
- (b) Estimate the slope of the tangent line at *P* by averaging the slopes of two secant lines.
- (c) Use a graph of the function to estimate the slope of the tangent line at *P*. (This slope represents the rate at which the water is flowing from the tank after 15 minutes.)

Solution

a) calculate slope of PQ $M = \frac{g_{2} - g_{1}}{\chi_{2} - \chi_{1}}$ $P = (15, 250) (x_1, y_1)$ t (min) | V (gal)

10	444	444-250 = - 38.8
20		27.8
25	28	··· · 27.8 ··· · 22.2
30	0	··· - 11e.Te

b) Using the values of t that correspond to the points closest to P(t=10 and t=20), we have

C) from the graph, we can estimate the slope of the tangent line at P to be $-300 = -33.\overline{3}$

2.2 The Limit of a Function

1. Explain in your own words what is meant by the equation

$$\lim_{x\to 2} f(x) = 5$$

Is it possible for this statement to be true and yet f(2) = 3? Explain.

Solution

2. Explain what it means to say that

 $\lim_{x \to 1^{-}} f(x) = 3$ and $\lim_{x \to 1^{+}} f(x) = 7$

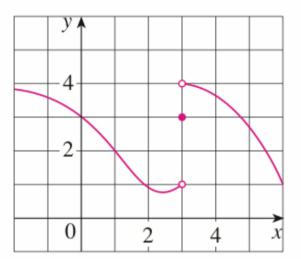
In this situation is it possible that $\lim_{x\to 1} f(x)$ exists? Explain.

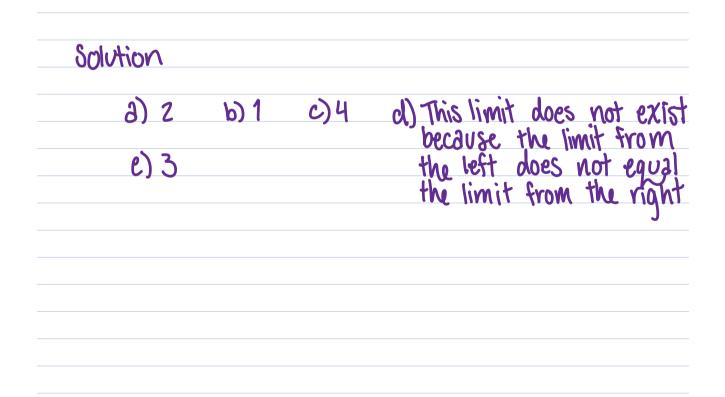
Solution

The limit as x approaches 1 from the left of f(x) is 3 and The limit as x approaches 1 from the right of f(x) is 7 The limit as x approaches 1 does not exist because the limit from the left does not equal the limit from the right

- 5. For the function *f* whose graph is given, state the value of each quantity, if it exists. If it does not exist, explain why.
 - (a) $\lim_{x \to 1} f(x)$ (b) $\lim_{x \to 3^-} f(x)$ (c) $\lim_{x \to 3^+} f(x)$

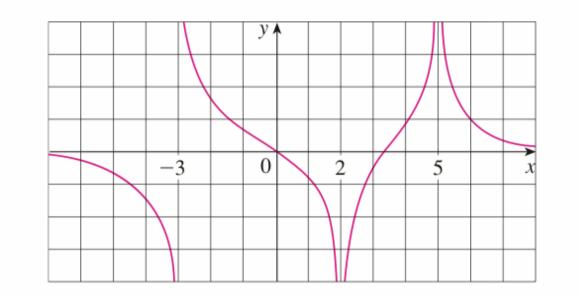
(d) $\lim_{x \to 3} f(x)$ (e) f(3)





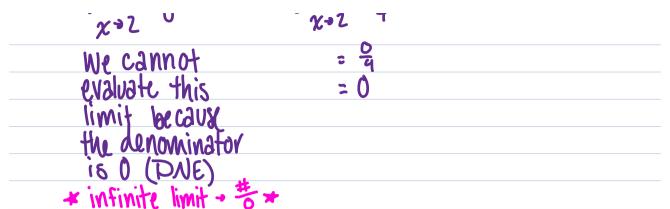
8. For the function R whose graph is shown, state the following.

- (a) $\lim_{x \to 2} R(x)$ (b) $\lim_{x \to 5} R(x)$ (c) $\lim_{x \to -3^-} R(x)$ (d) $\lim_{x \to -3^+} R(x)$
- (e) The equations of the vertical asymptotes.

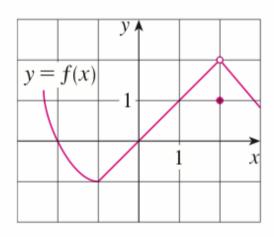


$$\frac{1}{2} \frac{f(x)}{0} \frac{1}{2} \frac{f(x)}{1} \frac{1}{2} \frac{f(x)}{1} \frac{1}{2} \frac{f(x)}{1} \frac{1}{2} \frac{1}{2}$$

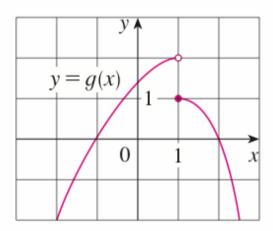
2.3 Colculating Limits using Limit Laws **1**. Given that $\lim_{x \to 2} f(x) = 4 \qquad \lim_{x \to 2} g(x) = -2 \qquad \lim_{x \to 2} h(x) = 0$ find the limits that exist. If the limit does not exist, explain why. (a) $\lim_{x \to 2} [f(x) + 5g(x)]$ (b) $\lim_{x \to 2} [g(x)]^3$ (d) $\lim_{x \to 2} \frac{3f(x)}{g(x)}$ (c) $\lim_{x \to 2} \sqrt{f(x)}$ (f) $\lim_{x \to 2} \frac{g(x)h(x)}{f(x)}$ (e) $\lim_{x \to 2} \frac{g(x)}{h(x)}$ Solution b) lim[g(x)]³ x→2 $a) \lim [4+5(-2)]$ X~) = (-2)³ = 4-10 = - % = - (0 d) lim x+Z c) lim TY X*2 二子 = 2 = - 6 e) lim f) $\lim_{t \to 0} \frac{-2(0)}{t}$



2. The graphs of *f* and *g* are given. Use them to evaluate each limit, if it exists. If the limit does not exist, explain why.



- (a) $\lim_{x \to 2} [f(x) + g(x)]$
- (c) $\lim_{x\to 0} \left[f(x)g(x) \right]$
- (e) $\lim_{x \to 2} \left[x^3 f(x) \right]$



(b)
$$\lim_{x \to 1} [f(x) + g(x)]$$

(d)
$$\lim_{x \to -1} \frac{f(x)}{g(x)}$$

(f) $\lim_{x \to 1} \sqrt{3 + f(x)}$

Solution

d)
$$\lim_{x \to 2} f(x) = 2$$
 $\lim_{x \to 2} g(x) = 0$

(2+0) = 2	
b) lim f(x)=1 x=1	lim g(x). DNE because the limit
	from the right does not equal the limit from the left
c) $\lim_{x \to 0} f(x) = 0$	$\lim_{x \to 0} (x) = \frac{4}{3}$
(0 · ¹ / ₃) = 0	
d) $\lim_{x \to -1} f(x) = -1$	$\lim_{x \to -1} g(x) = 0$
= -1 This denor	limit does not exist because the minator is 0
$\begin{array}{c} c \\ x = 7 \\ x \\ \end{array}$	m f(x) = 2
(2 ³)(2) = 16	
f) $\lim_{x \to 1} f(x) = 1$	
√3+1 =√4	
=2 Calcole the Cill	
Evaluate the foll	10001rig 11711175

11.
$$\lim_{x \to 5} \frac{x^2 - 6x + 5}{x - 5}$$

$$\frac{\chi^2 - (a\chi_1 5)}{\chi - 5}$$
 if you try to plug in 5, the

$$\frac{\chi^2 - (a\chi_1 5)}{\chi - 5}$$
 if you try to plug in 5, the

$$\frac{\chi^2 - (a\chi_1 5)}{\chi - 5}$$
 if you try to plug in 5, the

$$\frac{\chi^2 - (a\chi_1 5)}{\chi - 5}$$
 if you try to plug in 5, the

$$\frac{\chi^2 - (a\chi_1 5)}{\chi - 5}$$
 if you try to plug in 5, the

$$\frac{\chi^2 - (a\chi_1 5)}{\chi - 5}$$
 if you try to plug in 5, the

$$\frac{\chi^2 - (a\chi_1 5)}{\chi - 5}$$
 is a removable

$$\frac{(\chi - 1)}{(\chi - 1)}$$

$$\frac{(5 - 1)}{(\chi - 5)}$$

$$\frac{\chi^2 - (a\chi_1 + 5)}{\chi - 5} = 4$$

$$\frac{\chi^2 - (a\chi_1 + 5)}{\chi - 5} = 4$$

$$\frac{\chi^2 - (a\chi_1 + 5)}{\chi - 5} = 4$$

$$\frac{\chi^2 - (a\chi_1 + 5)}{\chi - 5} = 4$$

$$\frac{\chi^2 - (a\chi_1 + 5)}{\chi - 5} = 4$$

$$\frac{\chi^2 - (a\chi_1 + 5)}{\chi - 5} = 4$$

$$\frac{\chi^2 - (a\chi_1 + 5)}{\chi - 5} = 4$$

$$\frac{\chi^2 - (a\chi_1 + 5)}{\chi - 5} = 4$$

$$\frac{\chi^2 - (a\chi_1 + 5)}{\chi - 5} = 4$$

$$\frac{\chi^2 - (a\chi_1 + 5)}{\chi - 5} = 4$$

$$\frac{\chi^2 - (a\chi_1 + 5)}{\chi - 5} = 4$$

$$\frac{\chi^2 - (a\chi_1 + 5)}{\chi - 5} = 4$$

$$\frac{\chi^2 - (a\chi_1 + 5)}{\chi - 5} = 4$$

$$\frac{\chi^2 - (a\chi_1 + 5)}{\chi - 5} = 4$$

$$\frac{\chi^2 - (a\chi_1 + 5)}{\chi - 5} = 4$$

$$\frac{\chi^2 - (a\chi_1 + 5)}{\chi - 5} = 4$$

$$\frac{\chi^2 - (a\chi_1 + 5)}{\chi - 5} = 4$$

$$\frac{\chi^2 - (a\chi_1 + 5)}{\chi - 5} = 4$$

$$\frac{\chi^2 - (a\chi_1 + 5)}{\chi - 5} = 4$$

$$\frac{\chi^2 - (a\chi_1 + 5)}{\chi - 5} = 4$$

$$\frac{\chi^2 - (a\chi_1 + 5)}{\chi - 5} = 4$$

$$\frac{\chi^2 - (a\chi_1 + 5)}{\chi - 5} = 4$$

$$\frac{\chi^2 - (a\chi_1 + 5)}{\chi - 5} = 4$$

$$\frac{\chi^2 - (a\chi_1 + 5)}{\chi - 5} = 4$$

$$\frac{\chi^2 - (a\chi_1 + 5)}{\chi - 5} = 4$$

$$\frac{\chi^2 - (a\chi_1 + 5)}{\chi - 5} = 4$$

$$\frac{\chi^2 - (a\chi_1 + 5)}{\chi - 5} = 4$$

$$\frac{\chi^2 - (a\chi_1 + 5)}{\chi - 5} = 4$$

$$\frac{\chi^2 - (a\chi_1 + 5)}{\chi - 5} = 4$$

$$\frac{\chi^2 - (a\chi_1 + 5)}{\chi - 5} = 4$$

$$\frac{\chi^2 - (a\chi_1 + 5)}{\chi - 5} = 4$$

$$\frac{\chi^2 - (a\chi_1 + 5)}{\chi - 5} = 4$$

$$\frac{\chi^2 - (a\chi_1 + 5)}{\chi - 5} = 4$$

$$\frac{\chi^2 - (a\chi_1 + 5)}{\chi - 5} = 4$$

$$\frac{\chi^2 - (a\chi_1 + 5)}{\chi - 5} = 4$$

$$\frac{\chi^2 - (a\chi_1 + 5)}{\chi - 5} = 4$$

$$\frac{\chi^2 - (a\chi_1 + 5)}{\chi - 5} = 4$$

$$\frac{\chi^2 - (a\chi_1 + 5)}{\chi - 5} = 4$$

$$\frac{\chi^2 - (a\chi_1 + 5)}{\chi - 5} = 4$$

$$\frac{\chi^2 - (a\chi_1 + 5)}{\chi - 5} = 4$$

$$\frac{\chi^2 - (a\chi_1 + 5)}{\chi - 5} = 4$$

$$\frac{\chi^2 - (a\chi_1 + 5)}{\chi - 5} = 4$$

$$\frac{\chi^2 - (a\chi_1 + 5)}{\chi - 5} = 4$$

$$\frac{\chi^2 - (a\chi_1 + 5)}{\chi - 5} = 4$$

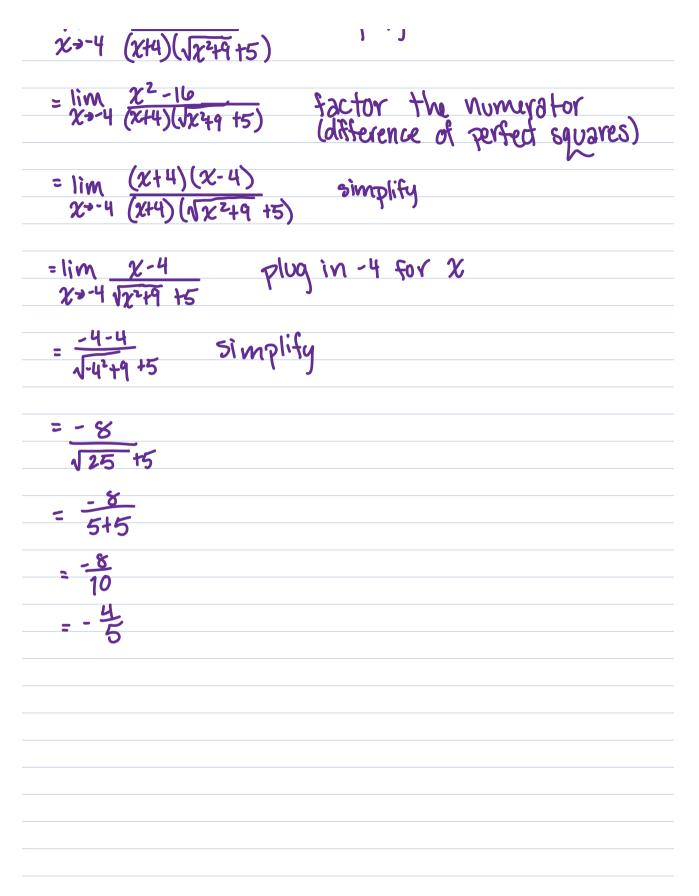
$$\frac{\chi^2 - (a\chi_1 + 5)}{\chi - 5} = 4$$

$$\frac{\chi^2 - (a\chi_1 + 5)}{\chi - 5} = 4$$

$$\frac{\chi^2 - (a\chi_1 + 5)}{\chi - 5} = 4$$

$$\frac{\chi^2 - (a\chi_1 + 5)}{\chi -$$

= t³ · 1 (factored correctly) then you will be left with $\frac{(t^2+1)(t\cdot 1)(t+1)}{(t\cdot 1)(t^2+t+1)}$ (t-1) is on both the top and bottom of the fraction $(t^{2}+1)(t+1)$ plug in 1 for t and solve t2++++1 $\frac{(1^2+1)(1+1)}{1^2+1+1}$ = (2)(2) = 3 **30.** $\lim_{x \to -4} \frac{\sqrt{x^2 + 9} - 5}{x + 4}$ Solution start by multiplying the numerator and denominator by the conjugate of 12279-5 $\lim_{\chi \to -4} \sqrt{\chi^{2}+9} - 5 = (\sqrt{\chi^{2}+9} + 5) = \sqrt{\chi^{2}+9} + 5$ = $\lim \frac{x^2+9-25}{2}$ Simplifu



2.4 The Precise Definition of a Limit

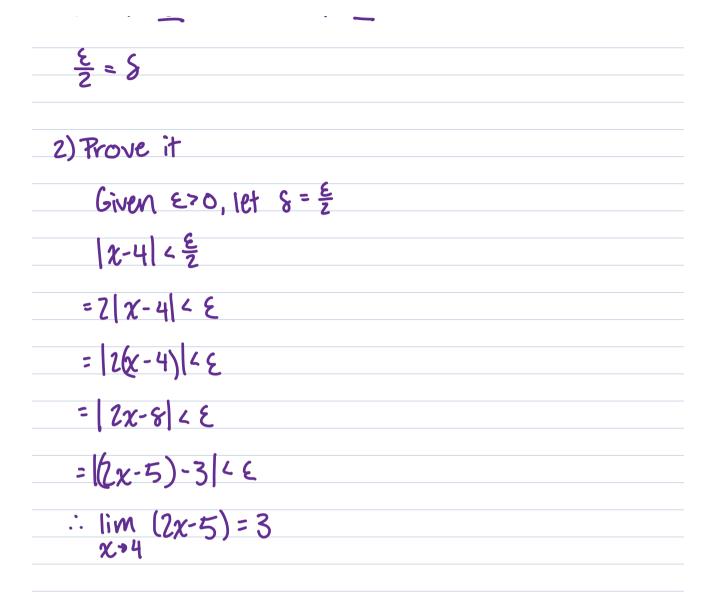
Symbol/Abbreviation Review
V→for all/for every
J→ There exists / there is
3→ such that (s.t.)
: Therefore
E · epsilon (represents desired margin of error)
s→delta (maximum distance from x=d to fit in the margin of error)
W.T.S Want to show
Now do you translate a limit statement to the ϵ/s form?
$\lim_{x \to a} f(x) = L \rightarrow if 0 < x - a < s \text{then} f(x) - L < \varepsilon$
What is the general E/s Proof Statement?

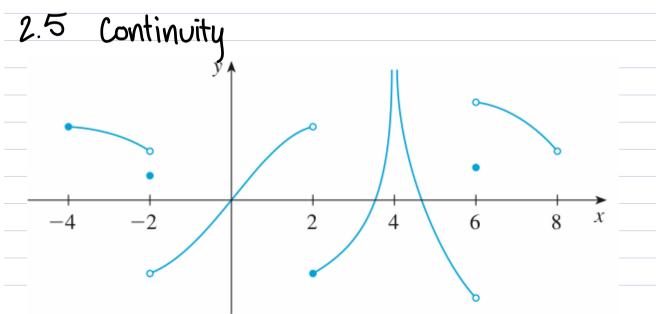
W.T.S. VE>O, J&>O s.t. if 0<|x-a|<8, then If(x)-L/<2

What is the first step in solving a proof? find s

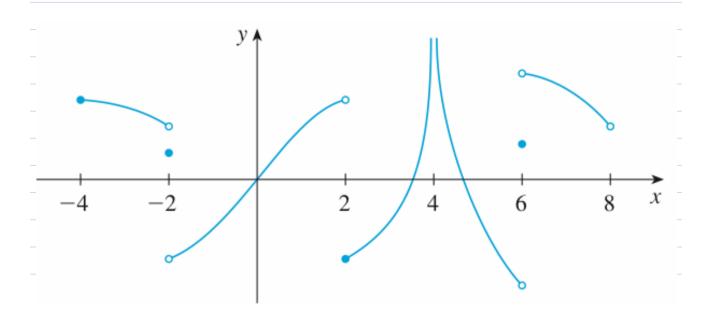
What is the second step of the proof?
plug in S for E (you're undoing what
you did in step 1)
What is the final step?
state the conclusion L: restate lim equation)
16.
$$\lim_{x\to 4} (2x-5) = 3$$

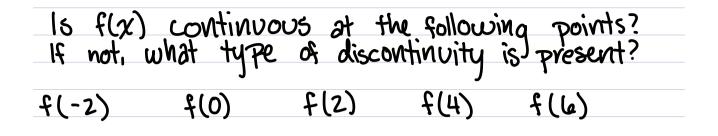
Solution
 $0 < |x - 4| < S$ $|(x-5) - 3| < E$
W.T.S. $\forall E > 0$, $\exists s > 0 \ st.$ if $0 < |x - 4| < S$, then
 $|(x-5) - 3| < E$
1) find S
 $|(2x-5) - 3| < E$
 $= |2x - 8| < E$
 $= |2(x-4)| < E$
 $= |x-4| < \frac{E}{2} \rightarrow |x-4| < S$

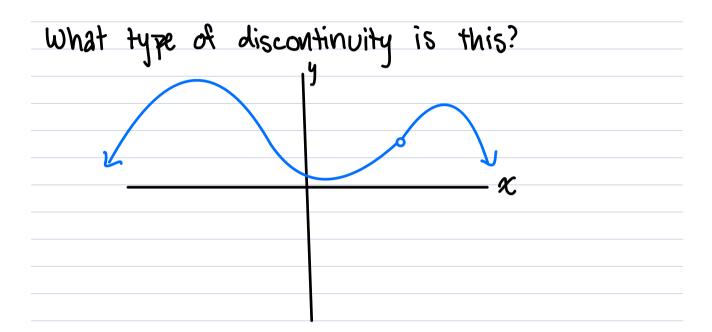




$\lim_{x \to \infty} f(x) =$	$\lim_{x \to -2^+} f(x) =$	$\lim f(x) =$
x >-Z_	X +-2+	x >-2
f(-2)≠	$\lim_{x \to 0} f(x) =$	$\lim_{x \to 0^+} f(x) =$
$\lim_{x \to \infty} f(x) =$, ((0) =	$\lim_{x \to 2^{-1}} f(x) =$
X > 0	-	x >2
$\lim_{x \to 2^+} f(x) =$	$\lim_{x \to 2} f(x) =$	f(1) =
X 3 2*	XIL	
$\lim_{x \to \infty} f(x) =$	$\lim_{x \to 4^+} f(x) =$	$\lim_{x \to 4} f(x) =$
x + 4"	X > 4+	234
f(4) =	$\lim_{x \to \infty} f(x) =$	$\lim_{x \to 6^+} f(x) =$
	X > 6-	x > 6 ⁺
$\lim_{x \to \infty} f(x) =$	f(6) =	
x×6		







Removable Point Discontinuity

